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observed to provide good VO accuracy at low computational
cost. We select the initial pose T1,0 to be the first GPS
ground truth pose such that F�!0 is a local East-North-Up
(ENU) coordinate system with its origin at the first GPS
position.

Observation Model
We assume that incoming stereo images have been de-
warped and rectified in a pre-processing step, and model
the stereo camera as a pair of perfect pinhole cameras with
focal lengths f

u

, f
v

and principal points (c
u

, c
v

), separated
by a fixed and known baseline b. If we take p

j

0 to be the
homogeneous 3D coordinates of keypoint j, expressed in
our chosen base frame F�!0, we can transform the keypoint
into the camera frame at pose k to obtain p

j
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where (u, v) are the keypoint coordinates in the left image
and d is the disparity in pixels.

Sliding Window Bundle Adjustment
We use the open-source libviso2 package (Geiger et al.
2011) to detect and track keypoints between stereo image
pairs. Based on these keypoint tracks, a three-point Random
Sample Consensus (RANSAC) algorithm (Fischler and
Bolles 1981) generates an initial guess of the interframe
motion and rejects outlier keypoint tracks by thresholding
their reprojection error. We compound these pose-to-pose
transformation estimates through our chosen window and
refine them using a local bundle adjustment, which we solve
using the nonlinear least-squares solver Ceres (Agarwal and
Mierle 2016). The objective function to be minimized can be
written as

J = Jreprojection + Jprior, (8)

where
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0 are the
estimated poses and keypoint positions in base frame F�!0.

The cost term Jprior imposes a normally distributed prior
ˇ

T

k1,0 on the first pose in the current window, based on
the estimate of this pose in the previous window. The error
in the current estimate ˆ

T

k1,0 of this pose compared to the
prior can be computed using the SE(3) matrix logarithm as
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= log
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. The 6 ⇥ 6 matrix RŤk1,0
is the

covariance associated with ˇ

T

k1,0 in its local tangent space,
and is obtained as part of the previous window’s bundle
adjustment solution. This prior term allows consecutive
windows of pose estimates to be combined in a principled
way that appropriately propagates global pose uncertainty
from window to window, which is essential in the context
of optimal data fusion.

Orientation Correction
In order to combat drift in the VO estimate produced by
accumulated orientation error, we adopt the technique of
Lambert et al. (2012) to incorporate absolute orientation
information from the sun directly into the estimation
problem. We assume the initial camera pose and its
timestamp are available from GPS and use them to determine
the global direction of the sun s0, expressed as a 3D unit
vector, from ephemeris data. We define the world frame F�!0

to be a local ENU coordinate system with the initial GPS
position as its origin. At each timestep we update s0 by
querying the ephemeris model using the current timestamp
and the initial camera pose, allowing our model to account
for the apparent motion of the sun over long trajectories.

By transforming the global sun direction into each camera
frame F�!k

in the window, we obtain predicted sun directions
ˆ

s

k

=

ˆ

T

k,0s0, where ˆ

T

k,0 is the current estimate of camera
pose k in the base frame. We compare the predicted and
estimated sun directions to introduce an additional error term
into the bundle adjustment cost function (cf. Equation (8)):

J = Jreprojection + Jprior + Jsun, (11)

where

Jsun =
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and Jreprojection and Jprior are defined in Equations (9)
and (10), respectively. This additional term constrains the
orientation of the camera, which helps limit drift in the VO
result due to orientation error (Lambert et al. 2012).

Since s

k

is constrained to be unit length, there are only
two underlying degrees of freedom. We therefore define f (·)
to be a function that transforms a 3D unit vector in camera
frame F�!k

to a zenith-azimuth parametrization:
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T . We can then define the
term esk = f (
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s
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) � f (s

k

) to be the error in the predicted
sun direction, expressed in azimuth-zenith coordinates, and
Rsk to be the covariance of these errors. While Rsk would
generally be treated as an empirically determined static
covariance, in our approach we use the per-observation
covariance computed using Equation (5), which allows us to
weight each observation individually according to a measure
of its intrinsic quality. In practice, we also attempt to mitigate
the effect of outlier sun predictions by applying a robust
Huber loss to the sun measurements in our optimizer.

Simulation Experiments
We assess the benefit of incorporating sun observations
of varying quality by conducting a series of simulation
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and d is the disparity in pixels.
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where (u, v) are the keypoint coordinates in the left image
and d is the disparity in pixels.
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timestamp are available from GPS and use them to determine
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to be a local ENU coordinate system with the initial GPS
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where (u, v) are the keypoint coordinates in the left image
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is the

covariance associated with ˇ

T

k1,0 in its local tangent space,
and is obtained as part of the previous window’s bundle
adjustment solution. This prior term allows consecutive
windows of pose estimates to be combined in a principled
way that appropriately propagates global pose uncertainty
from window to window, which is essential in the context
of optimal data fusion.

Orientation Correction
In order to combat drift in the VO estimate produced by
accumulated orientation error, we adopt the technique of
Lambert et al. (2012) to incorporate absolute orientation
information from the sun directly into the estimation
problem. We assume the initial camera pose and its
timestamp are available from GPS and use them to determine
the global direction of the sun s0, expressed as a 3D unit
vector, from ephemeris data. We define the world frame F�!0

to be a local ENU coordinate system with the initial GPS
position as its origin. At each timestep we update s0 by
querying the ephemeris model using the current timestamp
and the initial camera pose, allowing our model to account
for the apparent motion of the sun over long trajectories.

By transforming the global sun direction into each camera
frame F�!k

in the window, we obtain predicted sun directions
ˆ

s

k

=

ˆ

T

k,0s0, where ˆ

T

k,0 is the current estimate of camera
pose k in the base frame. We compare the predicted and
estimated sun directions to introduce an additional error term
into the bundle adjustment cost function (cf. Equation (8)):

J = Jreprojection + Jprior + Jsun, (11)

where

Jsun =

k2
X

k=k1

e

T

sk R

�1
sk esk , (12)

and Jreprojection and Jprior are defined in Equations (9)
and (10), respectively. This additional term constrains the
orientation of the camera, which helps limit drift in the VO
result due to orientation error (Lambert et al. 2012).

Since s

k

is constrained to be unit length, there are only
two underlying degrees of freedom. We therefore define f (·)
to be a function that transforms a 3D unit vector in camera
frame F�!k

to a zenith-azimuth parametrization:


✓
�

�

= f (s

k

) =



acos (�s
k,y

)

atan2 (s
k,x

, s
k,z

)

�

(13)

where s

k

=

⇥

s
k,x

s
k,y

s
k,z

⇤

T . We can then define the
term esk = f (

ˆ

s

k

) � f (s

k

) to be the error in the predicted
sun direction, expressed in azimuth-zenith coordinates, and
Rsk to be the covariance of these errors. While Rsk would
generally be treated as an empirically determined static
covariance, in our approach we use the per-observation
covariance computed using Equation (5), which allows us to
weight each observation individually according to a measure
of its intrinsic quality. In practice, we also attempt to mitigate
the effect of outlier sun predictions by applying a robust
Huber loss to the sun measurements in our optimizer.

Simulation Experiments
We assess the benefit of incorporating sun observations
of varying quality by conducting a series of simulation

Prepared using sagej.cls

Peretroukhin, Clement, and Kelly 5

observed to provide good VO accuracy at low computational
cost. We select the initial pose T1,0 to be the first GPS
ground truth pose such that F�!0 is a local East-North-Up
(ENU) coordinate system with its origin at the first GPS
position.

Observation Model
We assume that incoming stereo images have been de-
warped and rectified in a pre-processing step, and model
the stereo camera as a pair of perfect pinhole cameras with
focal lengths f

u

, f
v

and principal points (c
u

, c
v

), separated
by a fixed and known baseline b. If we take p

j

0 to be the
homogeneous 3D coordinates of keypoint j, expressed in
our chosen base frame F�!0, we can transform the keypoint
into the camera frame at pose k to obtain p

j

k

= T

k,0p
j

0 =

h

pj

k,x

pj

k,y

pj

k,z

1

i

T

. Our observation model g (·) can
then be formulated as

y

k,j

= g

⇣

p

j

k

⌘

=

2

6

4

u

v

d

3

7

5

=

2

6

4

f
u

pj

k,x

/pj

k,z

+ c
u

f
v

pj

k,y

/pj

k,z

+ c
v

f
u

b/pj

k,z

3

7

5

, (7)

where (u, v) are the keypoint coordinates in the left image
and d is the disparity in pixels.
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2011) to detect and track keypoints between stereo image
pairs. Based on these keypoint tracks, a three-point Random
Sample Consensus (RANSAC) algorithm (Fischler and
Bolles 1981) generates an initial guess of the interframe
motion and rejects outlier keypoint tracks by thresholding
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In order to combat drift in the VO estimate produced by
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information from the sun directly into the estimation
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timestamp are available from GPS and use them to determine
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where (u, v) are the keypoint coordinates in the left image
and d is the disparity in pixels.
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2011) to detect and track keypoints between stereo image
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Sun-BCNN:  

• consistently achieves < 18° 
median angular error 

• performs best with strong 
directional illumination cues 

• struggles in ambiguous lighting 
conditions
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Conclusions

Conclusions

• Incorporate temporal consistency (e.g. using RNN) 
• Account for different cameras (e.g. by changing variables to 

remove effect of intrinsic calibration)
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Caffe implementation of Sun-BCNN 
github.com/utiasSTARS/sun-bcnn
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