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Error growth In visual odometry Correcting drift with absolute orientation
Approach VO Is a dead-reckoning technique and suffers Drift can be reduced using orientation
from super-linear error growth, largely due to information from a sun sensor

accumulated orientation error

Training & Testing

VO

Error With orientation

error

Results Orientation-corrected , ,
_ > Specially oriented camera  Specialized sun sensor
Distance (e.g., MERSs)
S Well it 0
s . g RS, L
Conclusions Can we use our existing image stream to infer the « Wy

direction of the sun from environmental cues? ‘ |
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Bayesian Convolutional Neural Networks
Using dropout to compute uncertainty

\A A/

Mean & CNN

Uncertainty

Bayesian CNN

Training with dropout — Variational Inference

Given prior:

Training with dropout Is equivalent to minimizing the KL
(NN weights)

divergence between true posterior and variational distribution:

p(w) — p(w[X, S)
7N
(training images) (training targets)
By defining variational distribution: At test time, sample variational distribution stochastically:
(Monte Carlo dropout):
g(w) ~ p(w|X, S)

Dkr ( p(w|X,S) || g(w) )

N
~ 1
Ak ok o~ ~ K * n
(matrix with K; weights for layer /) Mean E(s;) = 8;, = N Z Sp(x", w")

~ del o n=1
. Y K model precision
q(w;) = M; diag {{63}3:1} ) . N 1 &
| Covariance  E(ss8:7) ~ 7711 + ~ 2 S w)si(x w™)T
b € Bernoulli(p;) n=1
~ _ mm
(dropout probability) SkSk

Originally developed to reduce overfitting

a) Standard Neural Net (b) After applying dropout.

Applied only during training

Monte Carlo Dropout

Uncertainty through stochastic sampling using
dropout during testing

GoogleNet g
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Motivation
Sliding window sparse stereo visual odometry Sun
(not directly visible)
Cost (to minimize) J = u7reprojection - jprior 77)\»@
ka J Stereo camera > 127
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Results
Sun-aided visual odometry R
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Training & Testing

How to build a Sun-BCNN
Dataset

KITTI Odometry Benchmark

L>-Norm Laver
(enforce unit norm) &

[ Dropout (p=0.5) after all conv. and FC Iayers.]

e 10 sequences

e 9/1 test/train split

for each sequence

GooglLeNet Cost Function

(Euclidian dist. of unit vectors)
. R training set
L(8K) =1— (8 - sp) g

1 “ 2 1 ~ 112 2 A
S U8 = sul® = 5 (lsel® + lswl® = 2(5¢ -5

:1—(ék-sk)

e 20k images per

Full KITTI Image \ = L),

Testing places*®.

THE SCENE RECOGNITION DATABASE  anallEStS

Compute N=25 % Mean: Compute mean /

stochastic samples using vector, normalize, convert o Caffe Implementation

e Dropout after all convolutional

Covariance: Convert to azimuth, zenith angles. Compute % and FC layers
empirical covariance, add inverse model precision. e p=0.5

N—

e GoogleNet
Monte-Carlo dropout. — to azimuth and zenith — o L2-Norm layers from Caffe SL e Pre-trained on MIT Places

o 224 x 244 RGB resized images

e SGD, 1000 epochs, batch
size of 64
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Future Work

e Incorporate temporal consistency (e.g. using RNN)
e Account for different cameras (e.g. by changing variables to
remove effect of intrinsic calibration)

Approach
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Sun-BCNN

Bayesian Convolutional Neural Network to infer Sun Direction from a single RGB image, trained on the KITTI dataset
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For visual odometry (VO) in particular, the addition
of global cricotation information can Lmit tac growth
of drift error to be lincar rather than superlinear with
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